



# Quantifying Economic Benefits of Weather and Climate Forecasts

Sixth European Conference on Applications of Meteorology Rome, Italy

**September 16, 2003** 

Rodney Weiher
Chief Economist
National Oceanic and Atmospheric Administration
Program Planning and Integration
Washington, D.C.
Rodney.F.Weiher@noaa.gov







- 1. How Weather Forecasts create economic benefits
- 2. How quantifying benefits of Weather/Climate Forecasts supports Meteorological Services
- 3. Quantitative work underway in the United States



# Weather/Climate Forecasts Create Value



- Weather has economic impacts
- Nearly 30 percent of U.S.'s GDP is directly or indirectly affected by weather
  - \$3 trillion ranging from finance to retail trade
  - \$1 trillion in direct impacts (e.g., agriculture, space heating and cooling, construction, and outdoor recreation)
- With a reliable forecast, better decisions often can be made. Hence, reliable forecasts have economic value



### How to Measure the Value of Weather Forecast?



- Identify decisions that can be improved using a reliable forecast
- Value expected economic outcomes, when the best decisions are made
  - with weather forecast
  - and without forecast
- Difference between values with and without forecast is the expected value of the forecast



### How Quantifying Benefits of Weather/Climate Forecasts Support Meteorological Services



- Can support Meteorological Services and Operations at several levels
  - Understanding how forecast are used in decisionmaking can improve and target operations
  - Justify budgets
  - Cost/benefit analysis to prioritize programs
  - Policy analysis (user fees, pricing, public/private sector interface, etc.)



# Some of the Quantitative Work Underway in NOAA



- Weather
  - Benefits of daily forecasts to U.S. households  $\sqrt{\phantom{a}}$
  - Urban heat wave warning systems √
  - Hurricane warnings to households (underway)
  - Electricity generation (underway)
  - Drought forecasting (underway)
- Climate (ENSO)
  - Agriculture √
  - Fisheries √
  - Hydro-electric generation (underway)
  - Natural gas storage and distribution (underway)



### Value of Daily Weather Forecasts in the U.S. Household Sector



- The 105 million households are the largest user of NOAA products, consulting the forecast at least once a day
- Because daily forecast are not purchased in the market every day, valuing them is a challenge
- Study is the first to apply state-of-the-art "non-market" valuation techniques to weather
  - Contingent valuation
  - Conjoint analysis
- Study has received extensive peer-review



### Best Estimates of Annual U.S. Economic Benefits of Daily Forecast (willingness-to-pay)



|                                             | Per Household | Total (Billion) |
|---------------------------------------------|---------------|-----------------|
| Current Forecasts                           | \$109         | \$11.44         |
| Improved Forecasts                          | \$16          | \$1.73          |
| Cost of Current NOAA System (O&M & Capital) | \$13          | \$1.38          |





- Benefits of better warnings include "market" benefits such as reduced costs of evacuation (e.g., \$1 million per mile avoided)
- But benefits also include "non-market" benefits willingness-to-pay for reduced time, expense, and anxiety in storm preparation
- Hurricane study underway focuses on measuring these non-market benefits, similar to the Household study; targets hurricane prone populations



# Benefits of Urban Heat Wave Warning Systems



- Ten systems operating in United States; Philadelphia since 1995
- Uses weather forecast information to decide whether to issue a heat wave warning
- When a heat wave warning is issued, the city of Philadelphia takes steps to reduce the risk of heat related mortality
  - Public announcements buddy systems
  - Telephone Heatline
  - Public Health Department home visits
  - Senior center hours extended provide A/C
  - Homeless outreach







Costs of the Actions taken are comparatively low

- Three year costs on the order of \$200,000

Benefits -- reduced "excess mortality" -- are large

- Saved 117 lives from 1995-98
- Benefits estimated at \$468 million over 3 years



### Value of Weather Forecasts to Electricity Generators



Generating units have different startup leadtimes, fixed costs of operation, and unit costs of production

Start-up decisions are made in advance of anticipated future loads

Future loads must be forecast and weather forecasts are a key

#### **Bad Forecasts Increase Costs**

- When too high, high start-up cost units started unnecessarily
- When too low, high unit cost power may have to be purchased or generated



### **Electricity Generators (cont'd)**



Our study connects daily weather forecast with the utility's next day load forecast



Sample includes utilities across the United States. Initial results show significant value



### **Climate Forecast Benefits**



- NOAA has become proficient at forecasting weather patterns driven by the ENSO phenomenon (EL Nino, La Nina)
- We can make ENSO forecasts six to nine months in advance
- Longer term forecasts allow more opportunity for decisions to be responsive to forecasts





#### **Benefits of ENSO Forecasts**

- Better forecast-based storm preparation in California helped reduce losses in the big 97-97' EL Nino by \$1 billion relative to the 82-83' El Nino
- Benefits to U.S. Agriculture: \$200 \$300 million/year
- Benefits to Mexican agriculture: \$10 \$25 million/year
- World-wide agriculture benefits: <u>at least</u> \$450 to \$550 million/year



### **ENSO Examples (cont'd)**



- Improved U.S. corn storage decisions: \$200 million/year
- Forecast-based management of world rice stocks:
   \$23 billion/year (preliminary)
- Forecasts for small NW salmon fishery in U.S.: \$1 million/year



# But, Benefits of Weather/Climate Forecasts Can Be Limited



- Studied large Hydro electric system in United States
- Reservoir stream flows are ±30 percent in ENSO years
- The El Nino of 1997-98 was predicted to produce a wet fall and dry spring
- However, a non-typical circulation pattern developed, producing the opposite result
- So even with a perfectly accurate ENSO prediction, weather uncertainty persists, particularly at the local level



### References



All Benefit Numbers are contained and referenced in *Economic Statistics for NOAA*, (March 2003 Revised edition) U.S. Department of Commerce, NOAA, Washington, D.C.

Available from Rodney.F.Weiher@noaa.gov